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SUMMARY 
The method of homogeneous solutions using the self-similarity nature of certain field variables is employed 
to investigate the behavior of the stress field in the vicinity of wedge-shaped corners of branching cracks, 
a problem which poses difficulty when attempted by other methods. Closed form solutions are obtained by 
using the theory of complex variables. Two examples are studied; 1) when an existing crack branches off 
with constant velocity under an arbitrary angle and 2) when an existing crack bifurcates with different 
velocities at arbitrary angles. The method presented here can also be extended to study the stress field 
behavior at the wedge-shaped corners created by any number of branching cracks. 

1. Introduction 

When a crack branches from its plane of propagation, additional singularities are generated 
at the wedge-shaped corners where the crack changes its direction of  propagation in addition 
to the singularities at the crack tips. The study of  these singularities is important in the 
investigation of  the possibility of further fracture at the juncture of the main crack and the 
branching crack. For  the elastostatic case, the stress behavior at the corners of branching 
cracks has been studied by Sih [1] employing the method of eigen function expansion. The 
method is quite well known and we refer to Williams [2, 3]. However, when the crack 
propagates at high velocity under dynamic loading conditions, inertia effects play an im- 
portant role in the analysis and the associated elastodynamic problem poses difficulty 
when attempted by standard methods, such as transform techniques etc. This paper 
presents an efficient way of computing these singularities by employing the method of 
homogeneous solutions. 

The method of  homogeneous solutions has been extensively used in wave propagation 
problems and crack propagation problems (see, for example [4-8]). The method is briefly 
discussed in [9]. The method of  solution is based on the observation that certain field vari- 
ables are self-similar, i.e., they depend on r/t and 0 rather than on r, t and 0 separately. 
An important step in the analysis is the use of Chaplygin's transformation, which reduces 
the problem to the solution of  Laplace's equation in a semi-infinite strip containing slits. 
The conformal mapping technique is subsequently employed to map the semi-infinite strip 
on a half plane. The appropriate harmonic function in the half plane is obtained by using 
elements of the theory of  functions of complex variables. The singular behavior of  the stress 
field at the wedge-shaped corners is finally obtained by a limiting process. 

Since certain features of the in-plane and the anti-plane problems are similar, the mathe- 
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matically simpler anti-plane shear problem is studied here which might greatly aid the 

study of the in-plane problem. 

2. The diffraction problem 

We consider an isotropic, homogeneous, linearly elastic medium containing a semi-infinite 
crack. At time t = 0, a plane incident wave strikes the tip of  the crack (x = y = 0) and is 

of  the form 

wi,o(x, y,  t) = f ( z )  = f [ t  + (x/c) sin a - (y/c) cos c~], (2.1) 

where w is the out-of-plane displacement, ~ is the angle the wave front makes with the 
x-axis, c is the velocity of  the transverse waves and f(z) -- 0 for z __< 0. Subsequently the 
wave is reflected and diffracted and the wave patterns are shown in Fig. i. It  is assumed 

that cracks emanate from the crack tip (x = y = 0) under arbitrary angles rc~c s ( j  = 1, 2, 
.. ,  n) and at constant velocities vj (v j~ c < 1), creating wedge-shaped corners, at the instant 

the crack tip is struck by the wave. These corners are denoted by Pl (l = 1, 2, . . . ,  n + 1), 
see Fig. 1. In Fig. 1, the ~j are taken such that , 1  < ~c 1, ~z . . . . .  tcm < 0 and 0 < ~m+l, 

, . . ,  ten < 1. 
The reflection and diffraction of the incident wave involve antiplane motions only, 

which are governed by 

02w/Ox 2 + a2w/Oy 2 = (1/c2)~2w/& 2 (2.2) 

where 

c = (#/p)§ (2.3) 

In eq. (2.3), y and p are the shear modulus and mass density respectively. To investigate 
the cylindrical diffracted wave and the stress field near the wedge-shaped corners, it is 

convenient to express the Laplacian in polar coordinates with origin fixed at the crack 

,/ 

Figure 1. Pattern of wavefronts and positions of the crack tips. 
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tip (x = y = 0). Equation (2.2) is thus rewritten as 

1 ~ ( ~ w )  1 ~2w 1 02w 
r + - (2.4) 

r t~r - ~ r  r 2 002 C 2 Ot 2"  

The problem at hand thus consists of finding solutions of eq. (2.4) satisfying certain bounda- 
ry conditions on the cylindrical wavefront imposed by eq. (2.1) and the stress free condition 
on the crack surfaces. 

3. Method of solution 

The method of solution is based on the observation that certain field variables are self- 
similar, i.e., they depend on r/t and 0 rather than on r, t and 0 separately. It can be easily 
shown that for an incident step displacement wave, the displacement w is self-similar, see 
[10], where as for an incident step stress wave, the particle velocity 

fv = Ow/Ot (3.1) 

is self-similar, see [6, 7, 8]. Since stress wave propagation is more relevant for practical 
purposes, we use the self-similarity nature of the particle velocity. We now proceed to solve 
the problem. 

Introducing a new variable 

s = r/t  (3.2) 

the equation for ~(s, 0) follows from (2.4) as 

s 2 1 -  + s  1 - 2 - ~ - ) - ~ - s  + 0 0 ~ = 0 .  (3.3) 

It can be shown that eq. (3.3) is elliptic for s __< e and hyperbolic for s > c (see, for example, 
[11]). Since we are interested to study the singularity in the vicinity of the wedge-shaped 
corners at the juncture of the branching cracks and main crack, it is enough to consider the 
case when s < c, i.e., inside the cylindrical wave front. 

For  s _< c, the following transformation 

fl = arccosh(c/s) (3.4) 

which is known as the Chaplygin's transformation, reduces eq. (3.3) to Laplace's equation 

e2Cvl~fl 2 + a2w/~0 2 = 0. (3.5) 

The real transformation (3.4) maps the interior of the circular domain into a semi-infinite 
strip containing slits in the fl - 0 plane, see Fig. 2, where corresponding points are indicated. 
An interesting aspect of this transformation is that radial lines in the r - 0 plane become 
horizontal lines in the fl - 0 plane. The boundary conditions on the surface of the cracks 
and the cylindrical wave front must also be transformed in the fl - 0 plane. 

Within the semi-infinite strip in the fl - 0 plane the solution of  Laplace's equation may 
be written as the real part of an analytic function G(7) 

ff = Re [G(r)] (3.6) 
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where 

7 = fl + iO. (3.7) 

It is usually difficult to determine the function G(7) which satisfies the boundary conditions 
in the 7-plane. However, the function G(7) can, in principle, be obtained by the use of 
conformal mapping (in our case we use the Schwarz-Christoffel transformation) 

" / ( .  - ~m+ 1 )17  (u + r ( .  - ~J') 
r = to(~) = C1 j = l  j=, ,+2 du + Cz (3.8) 

m n + l  

. (1 - . 2 )*1- I  (u + 4 ; )  13 (~ - ~) 
1 / = 1  / = m + l  

where 

= ~ + it/ (3.9) 

which maps the ?-plane onto the upper half of the ~-plane. Here 4 ~ (j :# m + 1) and ~e 
define the points in the ~-plane corresponding to Dj (j ~ m + 1) and Pz. C1 and C2 are 
complex constants. The ~-plane is shown in Fig. 3, where in and 4g define the points 

P D R D P D P D ~ F E B ~ , , z m m.H m.l ITI+2 n n+l 
z : r . . . .  z : z : . . . . . .  : : -- : 7 - - ~  

P D F P ,~D EP D P 
--~'B - I  -~i P _~D-~2 --~m "rn+l'rn+l-rn+2 ~n '~n+l I ~'E 

Figure 3. Mapping on the ~-plane. 
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corresponding to B and E in Fig. 1. In eq. (3.8), C1, C2, ~P and ~? (j # m + 1) are un- 
knowns. The mapping of the point F gives C2 = i~. By examining changes of the imagi- 
nary parts at Pt and comparing the coordinates of the points Dj in the 7 and (-planes, we 
obtain a system of non-linear equations, which allow us to compute the remaining unknowns 
for given values of tcj and vJc. In the (-plane the solution to the corresponding problem 
can be obtained by the method of sectionally holomorphic function. This method has been 
discussed in great detail by Muskhelishvili [12]. The result is of the form 

= Re[F(()]. (3.10) 

The relevant stress field should then be obtained inside the cylindrical wavefront. 

4. Stress field in vicinity of  wedge-shaped corners 

To study the singular behavior of the stress field in the vicinity of wedge-shaped corners, the 
shear stresses must be determined. The only non-vanishing stresses in the anti-plane case 
are given by 

"ro~ = (#/r)aw/O0 (4.1) 

and 

z,~ = #Ow/Or. (4.2) 

It can be easily checked that the derivatives of these stresses with respect to time employing 
eqs. (3.4) and (3.10) can be written as 

�9 ~ Re (4.3) 
T0z = r O~ 00 

and 

"~rz=Re ~ 0fl ~ " (4.4) 

To obtain the expressions for these stresses in the r -  0 plane, ~ has to be solved in terms 
of 7 from eq. (3.8). The singular behavior of  the stress field at the wedge-shaped corners 
can then be obtained by letting r -~ 0. The procedure, however, is very difficult because 
of the complexity of the mapping function (3.8) involved. A limiting process which will 
overcome this difficulty is shown in the sequel by considering some examples when the 
incident wave is a step stress wave defined by 

wino(x, y, t) = WozH(z) (4.5) 

where Wo is a constant, -c is defined in eq. (2. I) and H(z) is the Heaviside step function. 

Example 1: Let us assume that the semi-infinite crack propagates with constant velocity 
vl at an angle tclzc at the instant the crack tip is struck by the wave. This corresponds to 
the case when n = 1 in Section 3 and is known as skew crack propagation, see [6]. There 
are two wedge-shaped corners that are denoted by P1 and Pz, see Fig. 4. For a step stress 
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Figure 4. Skew crack propagation. 
Figure 5. Local polar coordinates at point P~ in the ~-plane-skew crack propagation. 

incident wave of the form given by eq. (4.5), the boundary conditions in terms of s and 0 
inside the cylindrical wave 'front can be written as, see [6] 

O = - n ;  s=<e: 0 ~ / ~ 0 = 0  

- n _ < O <  - ( ~ + n / 2 ) ;  s = c :  k = 2 W o  

- ( c ~ + r c / 2 ) < 0 < ~ + r c / 2 ;  s = c :  ~ =  W o 

~ + n / 2 < O < = n ;  s = c :  ~ = 0  

O = n; s < c: ~;v/~O = O 

0 = ~c,n + ~; s < v~: OVv/~O = O. 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

F'(O - 

where 

T he  ~-plane will be a semi-infinite strip with only one slit from flD = arccosh (e / vO  to 
infinity at 0 = ~:tn. The ~-plane is shown in Fig. 5 where the corresponding points are 
indicated. The mapping function between ~- and (-planes is given by 

y = co(() = (1 + ~){ln[{1 - (r - (2)~ + (~f + 1] - ln(~ + if)} 

+ (1 - ~0{ ln [{1  - ( ~ ) 2 } *  (1 - ~2)~ - ( ~  + 11 - l n ( (  - ~ ) }  

+ iTz (4.12) 

where ~ and {2 P are the image points of the wedge-shaped corners P1 and P2 in the if-plane. 
The analytic function in the (-plane can easily be obtained, see [6, 13] and it is of the 

form 

((2 - 1)21 ~+~(B 1) + (2}(E1) 

A = (Wo/=)[(g(~l)) 2 - 11 ~ (4.14) 

B = (Wo/n)[(~?)) 2 - 11 ~ (4.15) 

and prime denotes the differentiation with respect to the argument of the function. In eq. 
(4.13), r 1) and ~(~) are the points in the (-plane corresponding to B and E in the r - 0 
plane and superscript (1) is used to differentiate from ~B and fie in Section 3. The evalua- 
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tion of r and i (1) depends on the mapping function involved. The details of  these cal- 
culations can be found in [13]. 

We will now investigate the nature of the stress field in the wedge-shaped corners P~ 
and P2. In the vicinity of  - i f ,  we write 

~ - ~  + s~ (4.16) 

where ~ is a complex number of small modulus. Keeping only the leading terms, the 
mapping function (4.12) can be written as 

7~ e = co(s~) ~-, - ( 1  + t q ) l n ~  + itq~. (4.17) 

By defining a local coordinate system q, X, z at the point - i f  in the if-plane, see Fig. 5, 
we can express ~ as 

sl e = q exp [i(rc - X)]. (4.18) 

Substituting eq. (4.18) in eq. (4.17) and separating the real and imaginary parts, we obtain 

q = exp[-f l / (1  + tel)]; X = (~ + 0)/(1 + tq). (4.19a, b) 

In the vicinity of the point {,e, eq. (4.3) becomes 

~o~ = (#/r) Re [iF'(i~)/oY(e~)] (4.20) 

where F ' ( i f )  follows from eq. (4.13) with ~ replaced by if .  
Using a well-known representation for arccosh, we find from eqs. (3.2) and (3.4) that 

/ ~ = l n  + - 1 . (4.21) 

For small values of r/ct, eq. (4.21) is subsequently employed in eq. (4.19) to write 

q ,,~ ( _ ~ ) -  1/(1+~). (4.22) 

Differentiating eq. (4.17) with respect to ef and substituting in eq. (4.20) with q, X and ef 
given by eqs. (4.22), (4.19b) and (4.18) respectively and subsequently integrating with 
respect to time, we find 

/ 2ct \ ~/(1+~1) zc + 0 
1 ~ F , ( ~ e , ) ~ _  ) s i n - -  (4.23) 

(z~ 2 tcle 1 + rq 

It should be noted that the stress is not singular if tq =< 0. The general form of the depen- 
dence on r agrees with what is usually found at the vertex of a wedge, see [5]. 

A similar expression can also be obtained for the stress VOz in the vicinity of the point P2 
and is of the form 

1 # F'(r ~) s i n - - .  (4.24) 
(~~ ~ 2 ~ 1 c  1 - ~c, 

The stress remains finite for tq > 0. 
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Figure 6. Crack bifurcation. 
Figure 7. Local polar coordinates at the point Px - crack bifurcation. 

Example 2: In this example, we consider the case when the semi-infinite crack divides into 
two branches, which propagate with different velocities v a and v z at arbitrary angles tq and tc 2 
respectively under the influence of the transient stress wave, see Fig. 6. Here (n = 2, m = 1) 
we have three wedge-shaped corners P~, P2 and Pa- This situation is known as bifurcation. 
The boundary conditions (4.6)-(4.10) remain essentially the same for this example also. 
However, instead of the condition (4.11), we have conditions which represent two stress 

free crack surfaces and they are: 

0 = - ~  + e; s < v~: 0~/00 = O, (4.2~) 

(4.26) 

The 3,-plane will now be a semi-infinite strip with two Slits, one from fl<o ~) arccosh(c/v 0 
to infinity at 0 = -Klrc and the other one from fl~2) = arccosh(c/v2) to infinity at 0 = ~:2~z. 
The mapping function which maps the 3,-plane to (-plane is of the form, see [13]: 

3' = co(() = (1 - ~q){ln[{1 - (~)2}i(1 - (2)i + ~ e  + 11 - ln(( + ~)}  

+ (~ci + ~z){ln[{ 1 _ (~v)2},(1 _ ~z)~ _ (~e 2 + 11 - ln(~ - ~)}  

+ (1 . . . . . .  t%){ln[{1 (~)2}+(1 ~z)~ ff~ + 1] ln(~ ~3)}v 

+ire (4.27) 

where ~ ,  ~ and ~ are the image points of the wedge-shaped corners PI,  P2 and Pa in 
the if-plane. The analytic function F'(O is given by eq. (4.13) with ~(B l) and ~(E x) replaced by 

~(2) where ~(B z) and ~(a), the image points of B and E in the ~-plane, are normally ~(2) and ~E , 
different from ~(~) and ~(E ~) because of the mapping function involved. The details of these 
calculations can be found in [13]. We will now proceed to study the stress z0, at the corners 
P1, Pz and P3. 

In the vicinity of the point ~ ,  i.e., ~ ~ - ~ e  x + e~, the mapping function (4.27) can be 
written, keeping only the leading terms, as 

(4.28) 

With a local coordinate system q, Z at i f  in the (-plane, we can express ef as given by 
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eq. (4.18). Substituting (4.18) in (4.28) and separating the real and imaginary parts, we 

obtain 

q = exp[-/~/(1 - xl)l;  Z = (re + 0)/(1 - tq). (4.29a, b) 

As expressed before, in the vicinity of the corners, we can write 

(%~)~ = (#/r) Re [iF'(4~)/o)'(~)], j = 1, 2, 3. (4.30) 

Employing eq. (3.4) in (4.2%) and subsequently substituting in eq. (4.30) and integrating 
with respect to time, we obtain 

1 /~ F'(r v) s i n - -  (4.31) 
(~0~)~' ~ 2 x ~ c  1 - ~ 

In the vicinity of  the points ~ and ~3 P, we take ~ ~ ~z v + e~ and ~ ~ 4~ + eav respectively. 
Using these approximations in the mapping function (4.27), the shear stresses in the vicinity 
of  the wedge-shaped corners P2 and P3 can be computed as before and they are given by 

/ 2ct \ -rl-(~+~z)]/(~'+~) 0 + tctrc 
1 /~ F (42) sin (4.32) 

(z0~)~~ 2 [ 1 - ( t q  +tc2)]c xl +tc2 

and 

/ 2ct \ -~1(~ -~21 zr - 0 
1 /~ f (43) sin - - .  (4.33) 

(~0z)~ ~ 2 ~2c 1 - ~:2 

It should be noted that (z0z)2 P remains finite for (tq + ~c2) > 0 while (z0z)~ remain finite 
for ~2 > 0. 

In conclusion, it should be remarked that this method can be extended to n propagating 
cracks which give rise to (n + 1) wedge-shaped corners. For  each corner, the mapping 
function should be expressed by keeping only the leading term. 
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